US009152410B2

a2z United States Patent (10) Patent No.: US 9,152,410 B2

Khandelwal et al. 45) Date of Patent: Oct. 6, 2015

(54) AUTO-UPDATE WHILE RUNNING CLIENT 58}?;8332222 ﬁ}: ggg}? éma(r:m etal. e 71;/1137/(1)
an Camp etal. ...

INTERFACE WITH HANDSHAKE 2013/0346957 Al* 12/2013 Khandelwal etal. 717/170

(76) Inventors: Vaibhav Khandelwal, Redmond, WA
(US); Brian Remick, Snoqualmie, WA
(US); Kacey Abaraoha, Seattle, WA
(US)

(*) Notice: Subject to any disclaimer, the term of this

patent is extended or adjusted under 35

U.S.C. 154(b) by 123 days.

@
(22)

Appl. No.: 13/528,860
Filed: Jun. 21, 2012

Prior Publication Data

US 2013/0346957 Al Dec. 26, 2013

(65)

Int. CL.
GO6F 9/44
GO6F 9/445
U.S. CL
CPC e GO6F 8/67 (2013.01)
Field of Classification Search

CPC e GOGF 8/67
USPC e 717/170
See application file for complete search history.

(51)
(2006.01)
(2006.01)

(52)

(58)

(56) References Cited

U.S. PATENT DOCUMENTS

5,410,703 A * 4/1995 Nilssonetal. 717/168
7,779,402 B2 8/2010 Abernethy et al.
2003/0066065 Al 4/2003 Larkin
2003/0217257 Al* 11/2003 Ebsenetal.c.c....... 713/100
2006/0294498 Al* 12/2006 Partamian 717/106
2008/0052701 Al* 2/2008 Abernethy et al. . 717/170
2008/0215915 Al* 9/2008 Zhouetal. 714/15
2009/0217244 Al* /2009 Bozaketal. 717/124

CLIENT SIDE DEVICE 110

PREDECESSOR VERSION 11

FOREIGN PATENT DOCUMENTS

WO 2011072716 Al 6/2011
WO WO 2011072716 Al * 6/2011
OTHER PUBLICATIONS

Milenovic, International Application Publication WO 2011/072716
Al (Published Jun. 23, 2011) Applicant Provided Prior Art.*

Xiao, et al., “Towards Dynamic Component Updating: A Flexible
and Lightvveight Approach”, Retrieved at <<http://ieecexplore.iece.
org/stamp/stamp .jsp?tp=&arnumber=5254224>> 33rd Annual
IEEE International Computer Software and Applications Confer-
ence, Jul. 20, 2009, pp. 468-473.

Chandra, et al., “flockfs, a moderated group authoring system for
wireless workgroups”, Retrieved at <<http://www.chandrabrown.
org/surendar/papers/mobiquitous09.pdf>>, 6th Annual International
Conference on Mobile and Ubiquitous Systems: Computing, Net-
working & Services, MobiQuitous *09, Jul. 13, 2009, pp. 10.

(Continued)

Primary Examiner — Don Wong

Assistant Examiner — Theodore Hebert

(74) Attorney, Agent, or Firm — Aneesh Mehta; Kate
Drakos; Micky Minhas

(57) ABSTRACT

In one embodiment, a predecessor version of a client software
application may execute a runtime handover to a successor
version of the client software application. A client side device
110 may execute a predecessor version 112 of a client soft-
ware application while installing a successor version 116 of
the client software application. The client side device 110
may execute an update handshake between the successor
version 116 and the predecessor version 112. The client side
device 110 may execute a runtime validation of the successor
version 116.

20 Claims, 5 Drawing Sheets

> DATA APPLICATION
NETWORK SERVER 120
CONNECTION

A y y
SUCCESSOR INSTALLER
VERSION 116 | MODULE 114

130

=%
oS

US 9,152,410 B2
Page 2

(56) References Cited

OTHER PUBLICATIONS

“Automatic client updates”, Retrieved at <<http://www.winflector.
com/auto-client-update. html>>, Retrieved Date: Feb. 23,2012, p. 1.

“International Search Report”, Mailed Date: Sep. 10, 2013, Applica-
tion No. PCT/US2013/045530, Filed Date: Jun. 13, 2013, pp. 12.
Seifzadeh, et al., “A Survey of Dynamic Software Updating”, Journal
of Software: Evolution and Process, vol. 25, No. 5, Apr. 25, 2010, pp.
535-568.

* cited by examiner

US 9,152,410 B2

Sheet 1 of 5

Oct. 6, 2015

U.S. Patent

021 Y3aNY3S
NOILVYOIllddV

ocl

NOILDO3INNOD
AHOMLAN
v1ivd

P11 37nAOn 911 NOISH3IA
d3TIVLSNI d0O0SS3400NS

A A y

L1 NOISH3IA J0SS303d3dd

L1 30IA3A 3AIS LN3ITO

US 9,152,410 B2

Sheet 2 of 5

Oct. 6, 2015

U.S. Patent

(1144
d0SS300dd

09¢ IOV4YALNI
NOILVOINNIWNOD

0¥2 301A3a
JdOVHOLS

[1]%4
AHJONWAN

0S¢ 301A3A
1NdLNO/1NdNI

U.S. Patent Oct. 6, 2015 Sheet 3 of 5 US 9,152,410 B2

30

Figure 3

oS

PV 112 SV 116 IM 114 AS 120
| CHECK 3(|)2 | |
| —t | >
| | DOWNLOAD 304 |
-

! LAUNCH 306 | | |
| | g e N
| ASK 312 | START 310 | coPraes |
— —fe—
| ALERT314 | | |
»’
| HANDSHAKE I\ | |
I 316 REGISTER 318 | |
I le—" I I
| | N | |
VALIDATE 320

| I |
—~		
	swiTCcH322	
UNINSTALL		
324 | |
I I
I I
I I
I]

I

|

U.S. Patent Oct. 6, 2015 Sheet 4 of 5 US 9,152,410 B2

START
402

EXECUTE PREDECESSOR VERSION

404 ¥
DOWNLOAD SUCCESSOR VERSION
406 ¥
INITIATE INSTALLER MODULE
408 ¥

RECEIVE SHUTDOWN REQUEST |<—

SEND SHUTDOWN STATUS

4_
414 YES
EXECUTE UPDATE HANDSHAKE
416
SEND PREDECESSOR STATE DATA
418 ¥
BUFFER APPLICATION DATA
/ﬂ
420
RESUME
NO EXECUTION
424 YES
RECEIVE VALIDATION NOTICE
426 ¥
PASS APPL|CAT|ON DATA
428
UNINSTALL PREDECESSOR VERSION

400

Figure 4

U.S. Patent Oct. 6, 2015 Sheet 5 of 5 US 9,152,410 B2

START

202
INSTALL SUCCESSOR VERSION
504
SEND SHUTDOWN REQUEST
506
RECEIVE SHUTDOWN STATUS 510
WAIT COOLING
PERIOD
212 YES
RECEIVE UPDATE HANDSHAKE
514
RECEIVE PREDECESSOR STATE DATA
516 L]
REGISTER COMPONENT
518 v
EXECUTE RUNTIME VALIDATION
520 17
SEND VALIDATION NOTICE /m
522 SWITCH TO
@0 PREDECESSOR
526 — VERSION
SWITCH Ul ENTRY POINT
528 v
AUTOMATIC TRANSITION
530 L]
RECEIVE APPLICATION DATA
532
REQUEST UNINSTALL

200

Figure 5

US 9,152,410 B2

1
AUTO-UPDATE WHILE RUNNING CLIENT
INTERFACE WITH HANDSHAKE

BACKGROUND

A software developer may often continue to improve a
software application after the software application has been
released. The software developer may distribute multiple ver-
sions of the software application long after the initial version
of the software application debuted. With the internet allow-
ing a direct connection between the end user and the software
developer, the software application may continually update
from an application server maintained by the software devel-
oper.

SUMMARY

This Summary is provided to introduce a selection of con-
cepts in a simplified form that is further described below in
the Detailed Description. This Summary is not intended to
identify key features or essential features of the claimed sub-
ject matter, nor is it intended to be used to limit the scope of
the claimed subject matter.

Embodiments discussed below relate to a predecessor ver-
sion of a client software application executing a runtime
handover to a successor version of the client software appli-
cation. A client side device may execute a predecessor version
of a client software application while installing a successor
version of the client software application. The client side
device may execute an update handshake between the suc-
cessor version and the predecessor version. The client side
device may execute a runtime validation of the successor
version.

DRAWINGS

In order to describe the manner in which the above-recited
and other advantages and features can be obtained, a more
particular description is set forth and will be rendered by
reference to specific embodiments thereof which are illus-
trated in the appended drawings. Understanding that these
drawings depict only typical embodiments and are not there-
fore to be considered to be limiting of its scope, implemen-
tations will be described and explained with additional speci-
ficity and detail through the use of the accompanying
drawings.

FIG. 1 illustrates, in a block diagram, one embodiment of
an application updating network.

FIG. 2 illustrates, in a block diagram, one embodiment of a
computing device.

FIG. 3 illustrates, in a flow diagram, one embodiment of an
application update exchange.

FIG. 4 illustrates, in a flowchart, one embodiment of a
method for updating a client software application using a
predecessor version of the client software application.

FIG. 5 illustrates, in a flowchart, one embodiment of a
method for updating a client software application using a
successor version of the client software application.

DETAILED DESCRIPTION

Embodiments are discussed in detail below. While specific
implementations are discussed, these implementations are
strictly for illustration purposes. A person skilled in the rel-
evant art will recognize that other components and configu-
rations may be used without parting from the spirit and scope
of the subject matter of this disclosure. The implementations

10

15

20

25

30

35

40

45

50

55

60

65

2

may be a machine-implemented method, a tangible machine-
readable medium having a set of instructions detailing a
method stored thereon for at least one processor, or a client
side device.

A client side device may execute a client software appli-
cation, such as a client interface for a cloud service, that uses
an auto-updater to seamlessly transition from a predecessor
version of the client software application to a successor ver-
sion of the client software application. The predecessor ver-
sion of the client software application is the current version
being used, while the successor version is the version that is to
replace the current version. The client side device may
execute the transition transparently during runtime, without
the user even noticing. The successor version may execute a
runtime validation to assure that the successor version was
installed properly.

The predecessor version may execute an update handshake
to transition to the successor version without rebooting the
client software application. At a high level, the update hand-
shake may start the successor version of the client software
application. The successor version may send a shutdown
request to the predecessor version, asking the predecessor
version to initiate shutdown and transition to the successor
version. The predecessor version may reply with a shutdown
status message, indicating if the predecessor version is ready
to shutdown. The predecessor version may send a predecessor
data set to the successor version, conveying to the successor
version state data, such as the database state, current tasks, or
other information.

If the runtime validation fails, the successor version may
switch back to the predecessor version. The successor version
may register any components to be used to complete the
setup, such as a component object model. If the runtime
validation is successful, the successor version may switch
over any application entry points to point to the successor
version while uninstalling the predecessor version.

Thus, in one embodiment, a predecessor version of a client
software application may execute a runtime handover to a
successor version of the client software application. A client
side device may execute a predecessor version of a client
software application while installing a successor version of
the client software application. The client side device may
execute an update handshake between the successor version
and the predecessor version. The client side device may
execute a runtime validation of the successor version.

FIG. 1 illustrates, in a block diagram, one embodiment of
an application updating network 100. A client side device 110
running a client software application, such as a client inter-
face, may access an application server 120 via a data connec-
tion network 130 to check the application server 120 for
updates to the client software application. A predecessor ver-
sion 112 of the client software application may initiate an
installer module 114 to check the application server 120 for
anupdate. The installer module 114 may download and install
a successor version 116 of the client software application.
Further, the installer module 114 may execute a targeted
inquiry of the application server 120 to check for minor
updates and patches. Once the installer module 114 has suc-
cessfully installed the successor version 116, the predecessor
version 112 may execute an update handshake to prepare the
successor version 116 function as the active version of the
client software application.

FIG. 2 illustrates a block diagram of an exemplary com-
puting device 200 which may act as a client side device 110.
The computing device 200 may combine one or more of
hardware, software, firmware, and system-on-a-chip technol-
ogy to implement the client software application. The com-

US 9,152,410 B2

3

puting device 200 may include a bus 210, a processor 220, a
memory 230, a data storage 240, an input/output device 250,
and a communication interface 260. The bus 210, or other
inter-component communication system, may permit com-
munication among the components of the computing device
200.

The processor 220 may include at least one conventional
processor or microprocessor that interprets and executes a set
of instructions. The memory 230 may be a random access
memory (RAM) or another type of dynamic storage device
that stores information and instructions for execution by the
processor 220. The memory 230 may also store temporary
variables or other intermediate information used during
execution of instructions by the processor 220. The data stor-
age 240 may include a conventional ROM device or another
type of static storage device that stores static information and
instructions for the processor 220. The storage device 240
may include any type of tangible machine-readable medium,
such as, for example, magnetic or optical recording media,
such as a digital video disk, and its corresponding drive. A
tangible machine-readable medium is a physical medium
storing machine-readable code or instructions, as opposed to
a transitory medium or signal. The storage device 240 may
store a set of instructions detailing a method that when
executed by one or more processors cause the one or more
processors to perform the method.

The input/output device 250 may include one or more
conventional mechanisms that permit a user to input informa-
tion to the computing device 200, such as a keyboard, a
mouse, a voice recognition device, a microphone, a headset, a
gesture recognition device, a touch screen, gesture capture,
etc. The input/output device 250 may include one or more
conventional mechanisms that output information to the user,
including a display, a printer, one or more speakers, a headset,
or a medium, such as a memory, or a magnetic or optical disk
and a corresponding disk drive. The communication interface
260 may include any transceiver-like mechanism that enables
computing device 200 to communicate with other devices or
networks. The communication interface 260 may be a wire-
less, wired, or optical interface.

The computing device 200 may perform such functions in
response to a processor 220 executing sequences of instruc-
tions contained in a computer-readable medium, such as, for
example, the memory 230, a magnetic disk, or an optical disk.
Such instructions may be read into the memory 230 from
another computer-readable medium, such as the storage
device 240, or from a separate device via the communication
interface 260.

FIG. 3 illustrates, in a flow diagram, one embodiment of an
application update exchange 300. The predecessor version
(PV) 112 may check 302 with the application server (AS) 120
to see if an update is available. If the update is available, the
application server 120 may download 304 an installer module
(IM) 114 to the predecessor version 112. If no update is
found, the application server 120 may retry at a later time. The
predecessor version 112 may launch 306 the installer module
114. The installer module 114 may copy 308 the files for the
successor version (SV) 116 to the file system for the client
side device 110. The installer module 114 may start 310 the
successor version 116. The successor version 116 may ask
312 whether the predecessor version 112 is ready to shut
down by sending a shutdown request.

The predecessor version 112 may alert 314 the successor
version 116 when the predecessor version 112 is in a “shut-
down ready” state by sending a shutdown status message. The
predecessor version 112 may send an update handshake 316
to the successor version 116 providing an application state

10

15

20

25

30

35

40

45

50

55

60

65

4

data set, such as a processor state data set. If the predecessor
version 112 is ready to shut down, the successor version 116
may register 318 any components to complete setup. The
successor version 116 may validate 320 at runtime compo-
nent registrations once setup completes. If the runtime vali-
dation is successful, the successor version 116 may switch
322 over any application entry points to point to the successor
version 116, so that queries or commands to the software
application go to the successor version 116. If the runtime
validation is successful, the predecessor version 112 may
uninstall 324.

FIG. 4 illustrates, in a flowchart, one embodiment of a
method 400 for updating a client software application using a
predecessor version 112 of the client software application.
The client side device 110 may execute a predecessor version
112 of a client software application (Block 402). The prede-
cessor version 112 may download the successor version from
an application server 120 (Block 404). The predecessor ver-
sion 112 may initiate an installer module 114 to install the
successor version 116 (Block 406). The predecessor version
112 may receive a shutdown request from the successor ver-
sion 116 asking the predecessor version 112 to shut down
(Block 408). The predecessor version 112 may send a shut-
down status message to the successor version 116 indicating
whether the predecessor version 112 is ready to shut down
(Block 410). If the predecessor version 112 indicates in the
shutdown status message that the predecessor version 112 is
not ready to shut down (Block 412), the predecessor version
112 may receive a repeated shutdown request from the suc-
cessor version 116 after the successor version has waited for
a cooling period and then resent the shutdown request (Block
408).

If the predecessor version 112 indicates in the shutdown
status message readiness to shut down (Block 412), the pre-
decessor version 112 may execute an update handshake with
the successor version 116 upon installation of the successor
version 116 (Block 414). The predecessor version 112 may
send a predecessor state data set to the successor version 116
as part of the update handshake (Block 416). If the predeces-
sor version 112 receives any new interim application data
from the user while setting up the successor version 116, the
predecessor version 112 may buffer any interim application
data received by the predecessor version 112 after the instal-
lation begins (Block 418). If the runtime validation of the
successor version 116 was unsuccessful (Block 420), the
client device 110 may resume normal execution of the pre-
decessor version 112 upon startup failure or validation failure
by the successor version 116 (Block 422).

If the runtime validation of the successor version 116 was
successful (Block 420), the predecessor version 112 may
receive a validation notice from the successor version 116
(Block 424). The predecessor version 112 may pass any
interim application data received by the predecessor version
112 to the successor version 116, whether buffered or newly
received (Block 426). The client device 110 may uninstall the
predecessor version 112 upon successful startup and valida-
tion of the successor version 116 (Block 428).

FIG. 5 illustrates, in a flowchart, one embodiment of a
method 500 for updating a client software application using a
successor version of the client software application. The cli-
ent side device 110 may install a successor version 116 of a
client software application (Block 502). The successor ver-
sion 116 may send a shutdown request to the predecessor
version 112 (Block 504). The successor version 116 may
receive a shutdown status message from the predecessor ver-
sion 112 indicating whether the predecessor version 112 is
ready to shut down (Block 506). If the predecessor version

US 9,152,410 B2

5

112 indicates in the shutdown status message that the prede-
cessor version 112 is not ready to shut down (Block 508), the
successor version may wait a cooling period (Block 510)
before resending the shutdown request to the predecessor
version 112 (Block 504).

If the predecessor version 112 indicates in the shutdown
status message readiness to shut down (Block 508), the suc-
cessor version 116 may receive an update handshake from the
predecessor version 112 (Block 512). The successor version
116 may receive a predecessor state data set from the prede-
cessor version 112 as part of the update handshake (Block
514). The successor version 116 may register a component
(Block 516). The successor version 116 may execute a runt-
ime validation of the successor version 116 while the prede-
cessor version 112 of the client software application is
executing (Block 518). The successor version 116 may send
a validation notice to the predecessor version 112 indicating
the results of the runtime validation (Block 520).

If the runtime validation of the successor version 116 was
unsuccessful (Block 522), the client device 110 may switch a
user back to the predecessor version 112 upon startup failure
or validation failure by the successor version 116 (Block
524). If the runtime validation of the successor version 116
was successful (Block 522), the successor version 116 may
switch an application entry point from the predecessor ver-
sion 112 to the successor version 116 (Block 526). The client
side device 110 may automatically transition from the prede-
cessor version 112 to the successor version 116 (Block 528).
The successor version 116 may receive any interim applica-
tion data received by the predecessor version 112 after the
installation began (Block 530). The successor version 116
may request that the client side device 110 uninstall the pre-
decessor version 112 upon a successful startup and validation
of the successor version 116 (Block 532).

Although the subject matter has been described in lan-
guage specific to structural features and/or methodological
acts, the subject matter in the appended claims is not neces-
sarily limited to the specific features or acts described above.
Rather, the specific features and acts described above are
disclosed as example forms for implementing the claims.

Embodiments within the scope of the present invention
may also include non-transitory computer-readable storage
media for carrying or having computer-executable instruc-
tions or data structures stored thereon. Such non-transitory
computer-readable storage media may be any available media
that can be accessed by a general purpose or special purpose
computer. By way of example, and not limitation, such non-
transitory computer-readable storage media can comprise
RAM, ROM, EEPROM, CD-ROM or other optical disk stor-
age, magnetic disk storage or other magnetic storage devices,
or any other medium which can be used to carry or store
desired program code means in the form of computer-execut-
able instructions or data structures. Combinations of the
above may be within the scope of the non-transitory com-
puter-readable storage media.

Embodiments may also be practiced in distributed comput-
ing environments where tasks are performed by local and
remote processing devices that are linked (either by hard-
wired links, wireless links, or by a combination thereof)
through a communications network.

Computer-executable instructions include, for example,
instructions and data which cause a general purpose com-
puter, special purpose computer, or special purpose process-
ing device to perform a certain function or group of functions.
Computer-executable instructions also include program
modules that are executed by computers in stand-alone or
network environments. Generally, program modules include

10

15

20

25

30

35

40

45

50

55

60

65

6

routines, programs, objects, components, and data structures,
etc. that perform particular tasks or implement particular
abstract data types. Computer-executable instructions, asso-
ciated data structures, and program modules represent
examples of the program code means for executing steps of
the methods disclosed herein. The particular sequence of such
executable instructions or associated data structures repre-
sents examples of corresponding acts for implementing the
functions described in such steps.

Although the above description may contain specific
details, they should not be construed as limiting the claims in
any way. Other configurations of the described embodiments
are part of the scope of the disclosure. For example, the
principles of the disclosure may be applied to each individual
user where each user may individually deploy such a system.
This enables each user to utilize the benefits of the disclosure
even if any one of a large number of possible applications do
not use the functionality described herein. Multiple instances
of electronic devices each may process the content in various
possible ways. Implementations are not necessarily in one
system used by all end users. Accordingly, the appended
claims and their legal equivalents should only define the
invention, rather than any specific examples given.

We claim:

1. A machine-implemented method, comprising:

installing a successor version of a client software applica-

tion;

receiving an update handshake in the successor version

from the predecessor version upon the predecessor ver-
sion indicating a readiness to transparently transition
during runtime when the predecessor version is in a
shutdown ready state;

registering a component with the successor version;

executing a runtime validation of the successor version

while a predecessor version of the client software appli-
cation is executing; and

switching an application entry point from the predecessor

version to the successor version when the runtime vali-
dation is successful.

2. The method of claim 1, further comprising:

sending a shutdown request from the successor version to

the predecessor version.

3. The method of claim 1, further comprising:

waiting a cooling period before resending a shutdown

request to the predecessor version if the predecessor
version is not ready.

4. The method of claim 1, further comprising:

receiving a shutdown status message from the predecessor

version indicating whether the predecessor version is
ready to shutdown.

5. The method of claim 4, further comprising:

receiving a predecessor state data set from the predecessor

version to the successor version as part of the update
handshake.

6. The method of claim 1, further comprising:

requesting the predecessor version be uninstalled upon a

successful startup and validation of the successor ver-
sion.

7. The method of claim 1, further comprising:

automatically transitioning from the predecessor version to

the successor version.

8. The method of claim 1, further comprising:

sending a validation notice from the successor version to

the predecessor version.

9. The method of claim 1, further comprising:

switching a user back to the predecessor version upon

validation failure by the successor version.

US 9,152,410 B2

7

10. A tangible machine-readable medium having a set of
instructions detailing a method stored thereon that when
executed by one or more processors cause the one or more
processors to perform the method, the method comprising:

executing a predecessor version of a client software appli-

cation;

receiving a shutdown request from a successor version

asking the predecessor version to shut down upon instal-
lation of the successor version;

sending a shutdown status message from the predecessor

version to the successor version indicating a readiness of
the predecessor version to shut down;

executing an update handshake between the successor ver-

sion of the client software application and the predeces-
sor version to transparently transition during runtime
between the predecessor version and the successor ver-
sion; and

buffering interim application data received from the user

by the predecessor version after the installation begins.

11. The tangible machine-readable medium of claim 10,
wherein the method further comprises:

sending a predecessor state data set from the predecessor

version to the successor version as part of the update
handshake.

12. The tangible machine-readable medium of claim 10,
wherein the method further comprises:

receiving a validation notice from the successor version

indicating a runtime validation was successful.

13. The tangible machine-readable medium of claim 10,
wherein the method further comprises:

downloading the successor version from an application

server.

14. The tangible machine-readable medium of claim 10,
wherein the method further comprises:

initiating an installer module to install the successor ver-

sion.

5

20

25

30

35

8

15. The tangible machine-readable medium of claim 10,
wherein the method further comprises:

passing interim application data received by the predeces-
sor version to the successor version.

16. The tangible machine-readable medium of claim 10,

wherein the method further comprises:

uninstalling the predecessor version upon successful vali-
dation of the successor version.

17. The tangible machine-readable medium of claim 10,

wherein the method further comprises:

resume normal execution of the predecessor version upon
validation failure by the successor version.

18. A client side device, comprising:

a communication interface that downloads a successor ver-
sion of a client software application from an application
server; and

aprocessor that executes a predecessor version of the client
software application while installing a successor version
of the client software application, executes an update
handshake between the successor version and the pre-
decessor version upon the predecessor version indicat-
ing a readiness to shut down, executes a runtime valida-
tion of a component registration of the successor
version, switches an application entry point from the
predecessor version to the successor version upon a suc-
cessful validation, and transparently transitions from the
predecessor version to the successor version.

19. The client side device of claim 18, wherein the proces-
sor uninstalls the predecessor version upon successful vali-
dation of the successor version.

20. The client side device of claim 18, wherein the proces-
sor switches a user back to the predecessor version upon
validation failure by the successor version.

#* #* #* #* #*

